11.机器人系统仿真搭建gazebo环境、仿真深度相机、雷达、RGB相机

目录

1 gazebo仿真环境搭建

1.1  直接添加内置组件创建仿真环境

1.2 urdf、gazebo、rviz的综合应用

2 ROS_control

2.1 运动控制实现流程(Gazebo)

2.1.1 已经创建完毕的机器人模型,编写一个单独的 xacro 文件,为机器人模型添加传动装置以及控制器

2.1.2 将此文件集成进xacro文件

2.1.3 修改launch文件

2.1.3  启动 Gazebo 并发布 /cmd_vel 消息控制机器人运动

2.3.4 里程计查看

3 雷达仿真信息以及显示

3.1 实现流程

3.2 为机器人模型添加雷达配置

3.3 集成进xacro文件

3.4 启动 Gazebo,使用 Rviz 显示雷达信息

4 摄像头仿真

4.1 为机器人模型添加摄像头配置

4.2 为机器人模型添加相机配置

5 深度相机Kinect仿真

5.1 为机器人模型添加深度相机配置

5.2 kinect点云数据显示


1 gazebo仿真环境搭建

        到目前为止,我们已经可以将机器人模型显示在 Gazebo 之中了,但是当前默认情况下,在 Gazebo 中机器人模型是在 empty world 中,并没有类似于房间、家具、道路、树木... 之类的仿真物,如何在 Gazebo 中创建仿真环境呢?

Gazebo 中创建仿真实现方式有两种:

  • 方式1: 直接添加内置组件创建仿真环境

  • 方式2: 手动绘制仿真环境(更为灵活)

也还可以直接下载使用官方或第三方提高的仿真环境插件。

1.1  直接添加内置组件创建仿真环境

        启动roscore之后:

rosrun gazebo_ros gazebo

        是一个空的世界,我们设置一些障碍物。

        点击保存(save world as)即可。生成一个.world文件。

        选择Editor --> Building Editor

        可以添加门添加窗户等。

1.2 urdf、gazebo、rviz的综合应用

        关于URDF(Xacro)、Rviz 和 Gazebo 三者的关系,前面已有阐述: URDF 用于创建机器人模型、Rviz 可以显示机器人感知到的环境信息,Gazebo 用于仿真,可以模拟外界环境,以及机器人的一些传感器,如何在 Gazebo 中运行这些传感器,并显示这些传感器的数据(机器人的视角)呢?本节主要介绍的重点就是将三者结合:通过 Gazebo 模拟机器人的传感器,然后在 Rviz 中显示这些传感器感知到的数据。主要内容包括:

  • 运动控制以及里程计信息显示

  • 雷达信息仿真以及显示

  • 摄像头信息仿真以及显示

  • kinect 信息仿真以及显示

2 ROS_control

        gazebo 中已经可以正常显示机器人模型了,那么如何像在 rviz 中一样控制机器人运动呢?在此,需要涉及到ros中的组件: ros_control。

        场景:同一套 ROS 程序,如何部署在不同的机器人系统上,比如:开发阶段为了提高效率是在仿真平台上测试的,部署时又有不同的实体机器人平台,不同平台的实现是有差异的,如何保证 ROS 程序的可移植性?ROS 内置的解决方式是 ros_control。

        ros_control:是一组软件包,它包含了控制器接口,控制器管理器,传输和硬件接口。ros_control 是一套机器人控制的中间件,是一套规范,不同的机器人平台只要按照这套规范实现,那么就可以保证 与ROS 程序兼容,通过这套规范,实现了一种可插拔的架构设计,大大提高了程序设计的效率与灵活性。

        gazebo 已经实现了 ros_control 的相关接口,如果需要在 gazebo 中控制机器人运动,直接调用相关接口即可。

        承上,运动控制基本流程:

  1. 已经创建完毕的机器人模型,编写一个单独的 xacro 文件,为机器人模型添加传动装置以及控制器

  2. 将此文件集成进xacro文件

  3. 启动 Gazebo 并发布 /cmd_vel 消息控制机器人运动

2.1 运动控制实现流程(Gazebo)

2.1.1 已经创建完毕的机器人模型,编写一个单独的 xacro 文件,为机器人模型添加传动装置以及控制器

        我们建立一个文件夹gazebo,存放传动装置以及控制器相关文件:move.xacro

        把这个传动装置以及控制器相关文件集成进总的xacro文件中:

        官方文档复制下来即可,无需自己写:

<robot name="my_car_move" xmlns:xacro="http://wiki.ros.org/xacro">

    <!-- 传动实现:用于连接控制器与关节 -->
    <xacro:macro name="joint_trans" params="joint_name">
        <!-- Transmission is important to link the joints and the controller -->
        <transmission name="${joint_name}_trans">
            <type>transmission_interface/SimpleTransmission</type>
            <joint name="${joint_name}">
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
            </joint>
            <actuator name="${joint_name}_motor">
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
                <mechanicalReduction>1</mechanicalReduction>
            </actuator>
        </transmission>
    </xacro:macro>

    <!-- 每一个驱动轮都需要配置传动装置 -->
    <xacro:joint_trans joint_name="left_wheel2base_link" />
    <xacro:joint_trans joint_name="right_wheel2base_link" />

    <!-- 控制器 -->
    <gazebo>
        <plugin name="differential_drive_controller" filename="libgazebo_ros_diff_drive.so">
            <rosDebugLevel>Debug</rosDebugLevel>
            <publishWheelTF>true</publishWheelTF>
            <robotNamespace>/</robotNamespace>
            <publishTf>1</publishTf>
            <publishWheelJointState>true</publishWheelJointState>
            <alwaysOn>true</alwaysOn>
            <updateRate>100.0</updateRate>
            <legacyMode>true</legacyMode>
            <leftJoint>left_wheel2base_link</leftJoint> <!-- 左轮 -->
            <rightJoint>right_wheel2base_link</rightJoint> <!-- 右轮 -->
            <wheelSeparation>${base_link_radius * 2}</wheelSeparation> <!-- 车轮间距 -->
            <wheelDiameter>${wheel_radius * 2}</wheelDiameter> <!-- 车轮直径 -->
            <broadcastTF>1</broadcastTF>
            <wheelTorque>30</wheelTorque>
            <wheelAcceleration>1.8</wheelAcceleration>
            <commandTopic>cmd_vel</commandTopic> <!-- 运动控制话题 -->
            <odometryFrame>odom</odometryFrame> 
            <odometryTopic>odom</odometryTopic> <!-- 里程计话题 -->
            <robotBaseFrame>base_footprint</robotBaseFrame> <!-- 根坐标系 -->
        </plugin>
    </gazebo>

</robot>

        解释一下怎么适配自己的场景:

        第一部分是传动实现:用于连接控制器与关节

        这里要改成我们自己的关节。

        我们的驱动轮关节名叫做base_link2_${wheel_name},传入参数是left和right,因此move.xacro改为:

    <xacro:joint_trans joint_name="base_link2_left" />
    <xacro:joint_trans joint_name="base_link2_right" />

        后面是差速控制器:

        整体来看是这样!

<robot name="my_car_move" xmlns:xacro="http://wiki.ros.org/xacro">

    <xacro:macro name="joint_trans" params="joint_name">
        <!-- Transmission is important to link the joints and the controller -->
        <transmission name="${joint_name}_trans">
            <type>transmission_interface/SimpleTransmission</type>
            <joint name="${joint_name}">
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
            </joint>
            <actuator name="${joint_name}_motor">
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
                <mechanicalReduction>1</mechanicalReduction>
            </actuator>
        </transmission>
    </xacro:macro>

    <xacro:joint_trans joint_name="base_link2_left" />
    <xacro:joint_trans joint_name="base_link2_right" />

    <gazebo>
        <plugin name="differential_drive_controller" filename="libgazebo_ros_diff_drive.so">
            <rosDebugLevel>Debug</rosDebugLevel>
            <publishWheelTF>true</publishWheelTF>
            <robotNamespace>/</robotNamespace>
            <publishTf>1</publishTf>
            <publishWheelJointState>true</publishWheelJointState>
            <alwaysOn>true</alwaysOn>
            <updateRate>100.0</updateRate>
            <legacyMode>true</legacyMode>
            <leftJoint>base_link2_left</leftJoint>
            <rightJoint>base_link2_right</rightJoint>
            <wheelSeparation>${base_radius * 2}</wheelSeparation>
            <wheelDiameter>${wheel_radius * 2}</wheelDiameter>
            <broadcastTF>1</broadcastTF>
            <wheelTorque>30</wheelTorque>
            <wheelAcceleration>1.8</wheelAcceleration>
            <commandTopic>cmd_vel</commandTopic>
            <odometryFrame>odom</odometryFrame>
            <odometryTopic>odom</odometryTopic>
            <robotBaseFrame>base_footprint</robotBaseFrame>
        </plugin>
    </gazebo>

</robot>

2.1.2 将此文件集成进xacro文件

<robot name="mycarwithlidarandcamera" xmlns:xacro="http://wiki.ros.org/xacro">


    <xacro:include filename="interial.xacro" />

    <xacro:include filename="demo05carbase.xacro" />
    <xacro:include filename="cam.xacro" />
    <xacro:include filename="lidar.xacro" />

    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/move.xacro"/>
    
    
</robot>

        就把刚刚加入就好。

2.1.3 修改launch文件

         不需要修改:

<launch>

    <param name="robot_description" command="$(find xacro)/xacro /home/liuhongwei/Desktop/final/catkin_studyrobot/src/urdf/xacro/car_gazebo.xacro" />

    <include file="$(find gazebo_ros)/launch/empty_world.launch">
        <arg name="world_name" value="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/world/box_house.world" />
    </include>

    <node pkg="gazebo_ros" type="spawn_model" name="model" args="-urdf -model mycar -param robot_description"  />
</launch>

        roslaunch test gazebo_car.launch

2.1.3  启动 Gazebo 并发布 /cmd_vel 消息控制机器人运动

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.2, y: 0, z: 0}, angular: {x: 0, y: 0, z: 0.5}}'

        机器人运动了!

        或者安装控制节点:

sudo apt install ros-melodic-teleop-twist-keyboard

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

        当然,线速度、角速度比较快.....

        我们可以通过传参降低速度:

 rosrun teleop_twist_keyboard teleop_twist_keyboard.py _speed:=0.3  _turn:=0.5

        现在运动幅度就小多了。

2.3.4 里程计查看

        我们要启动关节和机器人运动发布状态节点:multisensor.launch

<launch>
    <node pkg="rviz" type="rviz" name="rviz" args="-d /home/liuhongwei/Desktop/final/catkin_studyrobot/src/config/qidong.rviz"/>


    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" />
    <node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" />
</launch>

        我们再打开之前的节点:

<launch>

    <param name="robot_description" command="$(find xacro)/xacro /home/liuhongwei/Desktop/final/catkin_studyrobot/src/urdf/xacro/car_gazebo.xacro" />

    <include file="$(find gazebo_ros)/launch/empty_world.launch">
        <arg name="world_name" value="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/world/box_house.world" />
    </include>

    <node pkg="gazebo_ros" type="spawn_model" name="model" args="-urdf -model mycar -param robot_description"  />
</launch>

        设置Fix Frame为odom。

        我们打开键盘控制节点:

        都动啦!

3 雷达仿真信息以及显示

3.1 实现流程

实现流程:

雷达仿真基本流程:

  1. 已经创建完毕的机器人模型,编写一个单独的 xacro 文件,为机器人模型添加雷达配置;

  2. 将此文件集成进xacro文件;

  3. 启动 Gazebo,使用 Rviz 显示雷达信息。

3.2 为机器人模型添加雷达配置

        我们需要把雷达贴到一个模块上:

        之前我们设置过lidar:

        如下:

<robot name="my_sensors" xmlns:xacro="http://wiki.ros.org/xacro">

    <gazebo reference="laser">
        <sensor type="ray" name="rplidar">
            <pose>0 0 0 0 0 0</pose>
            <visualize>true</visualize>
            <update_rate>5.5</update_rate>
            <ray>
                <scan>
                    <horizontal>
                        <samples>360</samples>
                        <resolution>1</resolution>
                        <min_angle>-3</min_angle>
                        <max_angle>3</max_angle>
                    </horizontal>
                </scan>
                <range>
                    <min>0.10</min>
                    <max>30.0</max>
                    <resolution>0.01</resolution>
                </range>
                <noise>
                    <type>gaussian</type>
                    <mean>0.0</mean>
                    <stddev>0.01</stddev>
                </noise>
            </ray>
            <plugin name="gazebo_rplidar" filename="libgazebo_ros_laser.so">
                <topicName>/scan</topicName>
                <frameName>laser</frameName>
            </plugin>
        </sensor>
    </gazebo>

</robot>

        完成!

3.3 集成进xacro文件

<robot name="mycarwithlidarandcamera" xmlns:xacro="http://wiki.ros.org/xacro">


    <xacro:include filename="interial.xacro" />

    <xacro:include filename="demo05carbase.xacro" />
    <xacro:include filename="cam.xacro" />
    <xacro:include filename="lidar.xacro" />

    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/move.xacro"/>

    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/laser.xacro"/>

</robot>

        把雷达传感器集成进xacro。

3.4 启动 Gazebo,使用 Rviz 显示雷达信息

        启动双launch节点:

        /scan话题就是雷达话题。

        gazebo中也有显示了。这是雷达的不可见扫描光束。

4 摄像头仿真

4.1 为机器人模型添加摄像头配置

<robot name="my_sensors" xmlns:xacro="http://wiki.ros.org/xacro">
    <gazebo reference="camera">
        <sensor type="camera" name="camera_node">
            <update_rate>30.0</update_rate>
            <camera name="head">
                <horizontal_fov>1.3962634</horizontal_fov>
                <image>
                    <width>1280</width>
                    <height>720</height>
                    <format>R8G8B8</format>
                </image>
                <clip>
                    <near>0.02</near>
                    <far>300</far>
                </clip>
                <noise>
                    <type>gaussian</type>
                    <mean>0.0</mean>
                    <stddev>0.007</stddev>
                </noise>
            </camera>
            <plugin name="gazebo_camera" filename="libgazebo_ros_camera.so">
                <alwaysOn>true</alwaysOn>
                <updateRate>0.0</updateRate>
                <cameraName>/camera</cameraName>
                <imageTopicName>image_raw</imageTopicName>
                <cameraInfoTopicName>camera_info</cameraInfoTopicName>
                <frameName>camera</frameName>
                <hackBaseline>0.07</hackBaseline>
                <distortionK1>0.0</distortionK1>
                <distortionK2>0.0</distortionK2>
                <distortionK3>0.0</distortionK3>
                <distortionT1>0.0</distortionT1>
                <distortionT2>0.0</distortionT2>
            </plugin>
        </sensor>
    </gazebo>
</robot>

4.2 为机器人模型添加相机配置

<robot name="mycarwithlidarandcamera" xmlns:xacro="http://wiki.ros.org/xacro">


    <xacro:include filename="interial.xacro" />

    <xacro:include filename="demo05carbase.xacro" />
    <xacro:include filename="cam.xacro" />
    <xacro:include filename="lidar.xacro" />

    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/move.xacro"/>

    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/laser.xacro"/>
    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/camera.xacro"/>


</robot>

        成功!

5 深度相机Kinect仿真

5.1 为机器人模型添加深度相机配置

<robot name="my_sensors" xmlns:xacro="http://wiki.ros.org/xacro">
    <gazebo reference="support">  
      <sensor type="depth" name="camera">
        <always_on>true</always_on>
        <update_rate>20.0</update_rate>
        <camera>
          <horizontal_fov>${60.0*PI/180.0}</horizontal_fov>
          <image>
            <format>R8G8B8</format>
            <width>640</width>
            <height>480</height>
          </image>
          <clip>
            <near>0.05</near>
            <far>8.0</far>
          </clip>
        </camera>
        <plugin name="kinect_camera_controller" filename="libgazebo_ros_openni_kinect.so">
          <cameraName>camera</cameraName>
          <alwaysOn>true</alwaysOn>
          <updateRate>10</updateRate>
          <imageTopicName>rgb/image_raw</imageTopicName>
          <depthImageTopicName>depth/image_raw</depthImageTopicName>
          <pointCloudTopicName>depth/points</pointCloudTopicName>
          <cameraInfoTopicName>rgb/camera_info</cameraInfoTopicName>
          <depthImageCameraInfoTopicName>depth/camera_info</depthImageCameraInfoTopicName>
          <frameName>support</frameName>
          <baseline>0.1</baseline>
          <distortion_k1>0.0</distortion_k1>
          <distortion_k2>0.0</distortion_k2>
          <distortion_k3>0.0</distortion_k3>
          <distortion_t1>0.0</distortion_t1>
          <distortion_t2>0.0</distortion_t2>
          <pointCloudCutoff>0.4</pointCloudCutoff>
        </plugin>
      </sensor>
    </gazebo>

</robot>
<robot name="mycarwithlidarandcamera" xmlns:xacro="http://wiki.ros.org/xacro">


    <xacro:include filename="interial.xacro" />

    <xacro:include filename="demo05carbase.xacro" />
    <xacro:include filename="cam.xacro" />
    <xacro:include filename="lidar.xacro" />

    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/move.xacro"/>

    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/laser.xacro"/>
    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/camera.xacro"/>
    <xacro:include filename="/home/liuhongwei/Desktop/final/catkin_studyrobot/src/gazebo/kinect.xacro"/>


</robot>

        启动!

5.2 kinect点云数据显示

        在kinect中也可以以点云的方式显示感知周围环境,在 rviz 中操作如下:

        添加PointCloud2点云,但是显示错位了。

        原因:在kinect中图像数据与点云数据使用了两套坐标系统,且两套坐标系统位姿并不一致。

        怎么解决呢??

        在插件中为kinect设置坐标系,修改配置文件的<frameName>标签内容:

        发布新设置的坐标系到kinect连杆的坐标变换关系,在启动rviz的launch中,添加:

<launch>

    <node pkg="tf2_ros" type="static_transform_publisher" name="static_transform_publisher" args="0 0 0 -1.57 0 -1.57 /support /support_depth" />
    <node pkg="rviz" type="rviz" name="rviz" args="-d /home/liuhongwei/Desktop/final/catkin_studyrobot/src/config/qidong.rviz"/>


    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" />
    <node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" />
</launch>

        OK!


http://www.niftyadmin.cn/n/5243227.html

相关文章

Baumer工业相机堡盟工业相机如何通过BGAPISDK将相机图像高速保存到电脑内存(C#)

Baumer工业相机堡盟工业相机如何通过BGAPISDK将相机图像高速保存到电脑内存&#xff08;C#&#xff09; Baumer工业相机Baumer工业相机图像保存到电脑内存的技术背景代码分析注册SDK回调函数BufferEvent声明可以存储相机图像的内存序列和名称在图像回调函数中将图像保存在内存序…

微型5G网关如何满足智能巡检机器人应用

在规模庞大、设施复杂的炼化厂、钢铁厂、工业园区等大型、巨型区域&#xff0c;时刻需要对各类设施设备巡查监测&#xff0c;保障生产运行安全可控。传统的人工巡检存在着心态松懈、工作低效、工作强度高、工作环境恶劣等问题&#xff0c;仍然存在安全隐患。 而随着物联网、5G、…

Qt-Q_OBJECT宏使用与“无法解析的外部符号qt_metacall/metaObject/qt_metacast“

有时候我们编写Qt类的时候&#xff0c;修改代码时直接加上Q_OBJECT宏&#xff0c;然后直接构建&#xff0c;会报如下错误&#xff1a; 这里的几个函数的声明是由Q_OBJECT宏引入的&#xff0c;而其对应的实现是由moc实现的&#xff0c;如果我们更新了代码但是没有执行qmake&…

jenkins搭建文档

jenkins搭建文档 简介一、安装运行环境1、安装JDK环境1&#xff09;查询自带的JDK2&#xff09;卸载自带的JDK3&#xff09;创建java文件夹并将jdk上传到该文件夹4&#xff09;解压5&#xff09;配置环境变量6&#xff09;配置生效7&#xff09;验证是否成功 2、安装maven环境1…

绿洲的基石-3D扫描技术

3D扫描技术 虚拟化到具现化 新时代悄然来临 文章目录 3D扫描技术前言一、3D扫描技术的原理1. 数据采集2. 数据处理3. 数据拼接4. 网格生成5. 纹理映射 二、3D扫描如何扫描到内部结构1. X射线扫描2. CT扫描3. 磁共振成像&#xff08;MRI&#xff09;4. 激光扫描 三、3D扫描技术…

【华为数据之道学习笔记】2-建立企业级数据综合治理体系

数据作为一种新的生产要素&#xff0c;在企业构筑竞争优势的过程中起着重要作用&#xff0c;企业应将数据作为一种战略资产进行管理。数据从业务中产生&#xff0c;在IT系统中承载&#xff0c;要对数据进行有效治理&#xff0c;需要业务充分参与&#xff0c;IT系统确保遵从&…

java设计模式学习之【装饰器模式】

文章目录 引言装饰器模式简介定义与用途实现方式 使用场景优势与劣势装饰器模式在Spring中的应用画图示例代码地址 引言 在日常生活中&#xff0c;我们常常对基本事物添加额外的装饰以增强其功能或美观。例如&#xff0c;给手机加一个保护壳来提升其防护能力&#xff0c;或者在…

2022年第十一届数学建模国际赛小美赛B题序列的遗传过程解题全过程文档及程序

2022年第十一届数学建模国际赛小美赛 B题 序列的遗传过程 原题再现&#xff1a; 序列同源性是指DNA、RNA或蛋白质序列之间的生物同源性&#xff0c;根据生命进化史中的共同祖先定义[1]。DNA、RNA或蛋白质之间的同源性通常根据它们的核苷酸或氨基酸序列相似性来推断。显著的相…